Robust Texture Classification by Subsets of Local Binary Patterns
نویسندگان
چکیده
Recently, a nonparametric approach to texture analysis has been developed, in which the distributions of simple texture measures based on local binary patterns (LBP) are used for texture description. The basic LBP encodes 256 simple feature detectors in a single 3x3 operator. This paper shows that a properly selected subset of patterns encoded in LBP forms an efficient and robust texture description which can achieve better classification rates in comparison with the whole LBP histogram. Experiments on classification of textures from the Columbia-Utrecht (CURET) database demonstrate the robustness of the approach.
منابع مشابه
A Novel Noise-Robust Texture Classification Method Using Joint Multiscale LBP
In this paper we describe a novel noise-robust texture classification method using joint multiscale local binary pattern. The first step in texture classification is to describe the texture by extracting different features. So far, several methods have been developed for this topic, one of the most popular ones is Local Binary Pattern (LBP) method and its variants such as Completed Local Binary...
متن کاملتغییرات جدید الگوی دودویی محلی و طبقه بندی و قسمت بندی تصاویر بافتی بستر دریا
Texture analysis plays an important role in image processing. Considering the extraordinary appearance texture sonar images, texture analysis are good choices for analysis of acoustic seabed images. Local binary pattern (LBP) operator is a very efficient and multi-resolution texture descriptor. It acquires appropriate information from the illumination and moods of images. Despite many developin...
متن کاملSecond-Order Statistical Texture Representation of Asphalt Pavement Distress Images Based on Local Binary Pattern in Spatial and Wavelet Domain
Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction met...
متن کاملMandibular Trabecular Bone Analysis Using Local Binary Pattern for Osteoporosis Diagnosis
Background: Osteoporosis is a systemic skeletal disease characterized by low bone mineral density (BMD) and micro-architectural deterioration of bone tissue, leading to bone fragility and increased fracture risk. Since Panoramic image is a feasible and relatively routine imaging technique in dentistry; it could provide an opportunistic chance for screening osteoporosis. In this regard, numerous...
متن کاملCompressed Image Hashing using Minimum Magnitude CSLBP
Image hashing allows compression, enhancement or other signal processing operations on digital images which are usually acceptable manipulations. Whereas, cryptographic hash functions are very sensitive to even single bit changes in image. Image hashing is a sum of important quality features in quantized form. In this paper, we proposed a novel image hashing algorithm for authentication which i...
متن کامل